

0277-5387(95)00081-X

# NITRILE HYDROLYSIS INDUCED BY OXIDATION OF A DINUCLEAR DIRUTHENIUM COMPLEX

# NOEMÍ D. LIS DE KATZ, FLORENCIA FAGALDE and NÉSTOR E. KATZ\*

Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina

(Received 4 January 1995; accepted 27 January 1995)

Abstract—On oxidation of the dinuclear complex [(terpy)(bipy)Ru<sup>II</sup>(4-pyCN)Ru<sup>II</sup> (NH<sub>3</sub>)<sub>5</sub>]<sup>4+</sup> (terpy = 2,2':6',2"-terpyridine, bipy = 2,2'-bipyridine, 4-pyCN = 4-cyanopyridine) by excess  $S_2O_8^{2^-}$  in an aqueous solution a mixed-valent species is formed, which undergoes nitrile hydrolysis according to the reaction : [(terpy)(bipy)Ru<sup>II</sup>(4-pyCN)Ru<sup>III</sup> (NH<sub>3</sub>)<sub>5</sub>]<sup>5+</sup> + H<sub>2</sub>O  $\rightarrow$  [(terpy)(bipy)Ru<sup>II</sup>(4-pyC(O)NH)Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub>]<sup>4+</sup> + H<sup>+</sup> [with 4-pyC(O) NH = isonicotinamido]. The observed rate constant  $k_h = 5.8 \times 10^{-3} \text{ s}^{-1}$  at 25.0°C, pH = 3.3 (CF<sub>3</sub>COOH),  $\mu = 0.1$  M (KCl), is *ca* twice as high as that of the mononuclear complex [(4-pyCN)Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub>]<sup>3+</sup>, but *ca* half that of the dinuclear species (CN)<sub>5</sub>Fe<sup>II</sup>(4-pyCN)Ru<sup>III</sup> (NH<sub>3</sub>)<sub>5</sub>and *ca* four times lower than that of the dinuclear complex [(NH<sub>3</sub>)<sub>5</sub>Ru<sup>III</sup>(4-pyCN) Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub>]<sup>6+</sup>, indicating that the catalytic effect of a Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub> group on the rate of nitrile hydrolysis is somewhat enhanced by a Ru<sup>II</sup>(terpy)(bipy) moiety, due to an inductive effect, although to a less extent than by a Fe<sup>II</sup>(CN)<sub>5</sub> or a Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub> group, probably because of the  $\pi$ -back-bonding ability of Ru<sup>II</sup>, which makes the nitrile carbon atom of 4-pyCN less susceptible to the nucleophilic attack of a water molecule.

The metal-catalysed conversion of nitriles to amides is a subject of interest in relation to amide syntheses of industrial and biological relevance.<sup>1–3</sup> In particular, nitriles undergo hydrolysis when bonded to a  $Ru^{III}(NH_3)_5$  group at least 10<sup>6</sup> times faster than when coordinated to a  $Ru^{II}(NH_3)_5$  group.<sup>4</sup> Several related studies on dinuclear ruthenium complexes with 4-pyCN as a bridging ligand (4-pyCN = 4cyanopyridine)<sup>5,6</sup> and mononuclear ruthenium complexes with 4-pyCN derivatives<sup>7</sup> have shown that the rate of hydrolysis of the nitrile group of 4pyCN is increased on protonation, derivatization or metallation of the pyridine N site of 4-pyCN.

Recently,<sup>8</sup> we have described the preparation and characterization of a dinuclear complex, of formula  $[(terpy)(bipy)Ru^{II}(4-pyCN)Ru^{II}(NH_3)_5]^{4+}$ , (1) (with terpy = 2,2': 6',2"-terpyridine, bipy = 2,2'-bipyridine), where 4-pyCN acts as a good electronic con-

nector between two metal sites of very different redox properties. The corresponding asymmetric mixed-valent species, [(terpy)(bipy)Ru<sup>II</sup>(4-pyCN) Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub>]<sup>5+</sup> (2) has been obtained by oxidation of 1 with Br<sub>2</sub> vapour in MeCN solutions.<sup>9</sup> In this work, the kinetics of nitrile hydrolysis of 2, prepared now by  $S_2O_8^{2-}$  oxidation of 1 in aqueous acidic solutions, has been investigated in order to elucidate the influence of a Ru<sup>II</sup>(terpy)(bipy) moiety on the catalytic effect of the Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub> group and to make comparisons with related systems.

## **EXPERIMENTAL**

The PF<sub>6</sub><sup>-</sup> salt of 1 was prepared as described previously<sup>8</sup> and purified by column chromatography using SP-Sephadex C-25. The hydrolysis product,  $[(terpy)(bipy)Ru^{II}(4-pyC(O)NH)Ru^{III}(NH_3)_5]^{4+}$  (3) was obtained as a PF<sub>6</sub><sup>-</sup> salt by

<sup>\*</sup> Author to whom correspondence should be addressed.

 $S_2O_8^{2-}$  oxidation of 1 in CF<sub>3</sub>SO<sub>3</sub>H (10<sup>-3</sup> M). All chemicals were reagent grade and used as received. Tri-distilled water was used for all kinetic determinations.

A Luftman-reliance II pH meter was used for pH measurements, with a precision of  $\pm 0.05$  pH units. IR spectra were recorded as KBr pellets on a Perkin–Elmer model 983G spectrophotometer. UV– vis spectra and kinetic measurements were carried out with a Shimadzu UV-160A spectrophotometer. The hydrolysis reaction was studied at pseudo-first-order conditions ([complex] =  $2.0 \times 10^{-4}$  M,  $[S_2O_8^{2-}] = 2.0 \times 10^{-3}$  M),  $T = 25.0^{\circ}$ C, pH between 1 and 7 (with adequate buffers) and  $\mu = 0.1$  M (KCl). Triplicate runs were made at each value of pH, and the rate constants were obtained from least-squares fits of ln  $(A_t - A_{\infty})$  vs. t, which were linear up to three half-lives.

#### **RESULTS AND DISCUSSION**

In previous work,<sup>8</sup> we demonstrated that 4-pyCN can act as a bridging ligand in the dinuclear species 1, where the pyridine nitrogen of 4-pyCN is coordinated to a Ru<sup>II</sup>(terpy)(bipy) group and the nitrile N to a Ru<sup>II</sup>(NH<sub>3</sub>)<sub>5</sub> group. In aqueous solution, peroxydisulphate  $(S_2O_8^{2-})$  can oxidize the ruthenium bonded to ammine ligands, but not that bonded to polypyridine ligands. The rate of the oxidative process in which 1 is converted into 2:

$$[(terpy)(bipy)Ru^{II} - N \bigcirc -CN - R^{II}(NH_3)_5]^{4+}$$

$$+ S_2O_8^{2-} \xrightarrow{k_1} [(terpy)(bipy)Ru^{II} - N \bigcirc -$$

$$CN - Ru^{III}(NH_3)_5]^{5+} + SO_4^{2-} + SO_4^{-} \qquad (1)$$

has been determined by stopped-flow techniques.<sup>10</sup> The measured value of  $k_1 = 3.3 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$  (at 25.0°C, 0.1 M KCl and pH = 4.84) and the products obtained are consistent with previous studies of oxidation of ruthenium(1I) ammines with per-oxydisulphate.<sup>11</sup>

In this work, we have investigated the subsequent hydrolysis reaction in which 2 is converted into 3:

$$[(terpy)(bipy)Ru^{II} - N \bigcirc -CN - Ru^{III}(NH_3)_5]^{5+}$$

$$+ H_2O \xrightarrow{k_h} [(terpy)(bipy)Ru^{II} - N \bigcirc -$$

$$O$$

$$\parallel$$

$$C - N - Ru^{III}(NH_3)_5]^{4+} + H^+. \qquad (2)$$

The identity of the product is confirmed by comparing the IR spectra of the  $PF_6^-$  salts of 1 and 3, as shown in Fig. 1. In effect, the nitrile stretching band, which appears at 2174 cm<sup>-1</sup> in 1,<sup>8</sup> disappears completely in 3. Besides, a new and intense band appears in 3 at 1398 cm<sup>-1</sup>, which can be ascribed to amide vibrations, while the ammonia symmetric deformation frequency,  $\delta_{sym}(NH_3)$ , shifts from 1287 cm<sup>-1</sup> in 1—indicative of a Ru<sup>II</sup>(NH<sub>3</sub>)<sub>5</sub> group—to 1307 cm<sup>-1</sup> in 3—indicative of a Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub> group.<sup>5</sup>

Since reaction (2) is slower than (1) by almost three orders of magnitude,  $k_{\rm h}$  can be measured by conventional spectrophotometric techniques. Fig. 2 shows the consecutive spectra obtained upon mixing 1  $(C = 2.5 \times 10^{-4} \text{ M})$  and  $S_2O_8^{2-1}$  $(C = 2.5 \times 10^{-3} \text{ M})$  at 25.0°C, 0.1 M KCl, pH = 3.0 (CF<sub>3</sub>COOH). During a time-scale of several minutes, 2 is converted into 3, as evidenced by the shifting of  $\lambda_{max} = 440$  (absorption maximum of 2) to 427 nm (absorption maximum of 3); an isosbestic point at  $\lambda = 410$  nm being obtained. The spectrum of the final product is coincident with that obtained when dissolving the solid  $PF_6^-$  salt of 3 in CF<sub>3</sub>COOH ( $10^{-3}$  M). Moreover, the metal-tometal charge transfer (MMCT) or intervalence band of 2, which appears at  $\lambda_{max} \cong 680$  nm under the same conditions stated above (and detected at a similar wavelength in MeCN solutions),9 is shifted to a value of  $\lambda_{\text{max}} \leq 650$  nm in 3, being masked by the long tail of the metal-to-ligand charge transfer (MLCT) band corresponding to  $d_{\pi}$  (Ru<sup>II</sup>)  $\rightarrow \pi^*$ (terpy, bipy) transitions. These changes can be accounted for by the difference in redox potentials of both metal sites in 2 and 3. Since isonicotinamido-bridged complexes exhibit higher redox asymmetry than 4-cyanopyridine-bridged complexes,<sup>6</sup> a higher value of energy is expected for the absorption maximum of its MMCT band.<sup>12</sup>

By fixing the measuring wavelength at 440 nm (absorption maximum of 2), we could measure  $k_{\rm h}$  under pseudo-first-order conditions: [complex] =  $2.0 \times 10^{-4}$  M and [S<sub>2</sub>O<sub>8</sub><sup>2-</sup>] =  $2.0 \times 10^{-3}$  M. A value of  $k_{\rm h} = 5.8 \times 10^{-3}$  s<sup>-1</sup> was obtained at 25.0°C, pH = 3.3 (CF<sub>3</sub>COOH) and  $\mu = 0.1$  M (KCl). This nitrile hydrolysis rate constant is reproducible to  $\pm 5\%$ , and is almost pH-independent between values of pH = 2.0 (CF<sub>3</sub>COOH) and pH = 6.5 (buffer of NaOH/KH<sub>2</sub>PO<sub>4</sub>). At pH = 1.0 (CF<sub>3</sub>COOH),  $k_{\rm h} = 7.4 \times 10^{-3}$  s<sup>-1</sup>, an increase which can be due to the onset of protonation of the isonicotinamide group, for which an upper limit of p $K_{\rm a} = 0.6$  has been estimated.<sup>6</sup>

The value of  $k_h$  for reaction (2) is *ca* double that of the mononuclear complex [(4-pyCN)Ru<sup>III</sup> (NH<sub>3</sub>)<sub>5</sub>]<sup>3-</sup> ( $k_h = 2.85 \times 10^{-3} \text{ s}^{-1}$ ),<sup>5</sup> indicating that the catalytic effect of a Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub> moiety on the rate of nitrile hydrolysis is enhanced by coordination of the pyridine N of 4-pyCN to a Ru<sup>III</sup>



Fig. 1. IR spectra (as KBr pellets) of: (--)  $[(terpy)(bipy)Ru^{II}(4-pyCN)Ru^{II}(NH_3)_5](PF_6)_4;$  (---)  $[(terpy)(bipy)Ru^{II}(4-pyC(O)NH)Ru^{III}(NH_3)_5](PF_6)_4.$ 



Fig. 2. Consecutive visible spectra obtained upon mixing of aqueous solutions of [(terpy) (bipy)Ru<sup>II</sup>(4-pyCN)Ru<sup>II</sup>(NH<sub>3</sub>)<sub>5</sub>]<sup>4+</sup> ( $C = 2.5 \times 10^{-4}$  M) and S<sub>2</sub>O<sub>8</sub><sup>2-</sup>( $C = 2.5 \times 10^{-3}$  M) at 25.0°C, pH = 3.0 (CF<sub>3</sub>COOH), 0.1 M KCl. Recording times were: (a) 30, (b) 75, (c) 115, (d) 190 and (e) 1830 s.

(terpy)(bipy) group, probably because of an inductive effect. However,  $k_{\rm h}$  is *ca* half that of the dinuclear species (CN)<sub>5</sub>Fe<sup>II</sup>(4-pyCN)Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub> ( $k_{\rm h} = 13.1 \times 10^{-3} \text{ s}^{-1}$ )<sup>5</sup> and *ca* four times lower than that of [(NH<sub>3</sub>)<sub>5</sub>Ru<sup>III</sup>(4-pyCN)Ru<sup>III</sup>(NH<sub>3</sub>)<sub>5</sub>]<sup>6+</sup> ( $k_{\rm h} = 25.0 \times 10^{-3} \text{ s}^{-1}$ ),<sup>6</sup> indicating that the  $\pi$ -backbonding ability of Ru<sup>III</sup> bonded to terpy and bipy is greater than that of a Fe<sup>II</sup>(CN)<sub>5</sub> group and makes the nitrile carbon atom of 4-pyCN less susceptible to the nucleophilic attack of a water molecule. In basic solution, however, the catalytic effect of Ru<sup>III</sup> bonded to polypyridines may be enhanced.<sup>13</sup>

To conclude, for the hydrolysis reaction (2) in acidic conditions, the electronic effect is dominant over the inductive effect, pointing to a good electronic communication between both ruthenium centres in the mixed-valent species **2**, with 4-pyCN as a bridging ligand.

Acknowledgements—We thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT, Argentina) for financial help. F. F. thanks CONICET for a graduate fellowship. N. E. K. is a Member of the Research Career (CONICET).

### REFERENCES

- 1. C. M. Jensen and W. C. Trogler, J. Am. Chem. Soc. 1986, 108, 723.
- S.-I. Murahashi, T. Naota and E. Saito, J. Am. Chem. Soc. 1986, 108, 7846.
- 3. R. Breslow, R. Fairweather and J. Keana, J. Am. Chem. Soc. 1967, **89**, 2135.
- 4. A. W. Zanella and P. C. Ford, *Inorg. Chem.* 1975, 14, 42.
- H.-Y. Huang, W.-J. Chen, C.-C. Yang and A. Yeh, *Inorg. Chem.* 1991, 30, 1862.
- 6. M. H. Chou, C. Creutz and N. Sutin, *Inorg. Chem.* 1992, **31**, 2318.
- 7. Z. Naal, E. Tfouni and A. V. Benedetti, *Polyhedron* 1994, **13**, 133.
- A. Ben Altabef, S. B. Ribotta de Gallo, M. E. Folquer and N. E. Katz, *Inorg. Chim. Acta* 1991, 188, 67.
- 9. F. Fagalde and N. E. Katz, *Polyhedron* 1995, 14, 1213.
- 10. F. Fagalde, V. Pouse and J. A. Olabe, unpublished data.
- 11. U. Fürholz and A. Haim, *Inorg. Chem.* 1987, 26, 3243.
- 12. C. Creutz, Prog. Inorg. Chem. 1983, 30, 1.
- 13. N. E. Katz, C. Creutz and N. Sutin, *Inorg. Chem.* 1988. 27, 1687.